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The smoothing of unstructured 
grids in large-scale 2D and 3D 
simulations is a critical component 
of many projects related to the 

Advanced Simulation and Computing 
(ASC) Program. Many techniques have been 
developed to perform this smoothing, but few 
are capable of handling large unstructured 
meshes in complex geometries. For example, 
most smoothers generate unacceptable or 
even invalid grids in the neighborhood of 
extremely convex or concave boundaries. 
In contrast, a smoothing technique was 
developed [1, 2] that is robust with respect 
to these geometric complexities. This grid 
smoothing methodology is based on the 
concept of harmonic coordinates, and 
hence, has a natural variational formulation. 
Specifically, this formulation defines a system 
of quasilinear elliptic partial differential 
equations (PDEs) with one equation for each 
of the grid coordinates. The only coupling in 
this system arises through the components 
of the metric tensor, which plays the role of 
a diffusion tensor. Thus, the system may be 
described as a set of quasilinear diffusion 
equations with a solution-dependent 
diffusion tensor. The grid smoothing is driven 
by defining a target metric, which in 2D is 
based on a dual grid. Since the quasilinear 
system of PDEs arises naturally from a 
variational formulation, a standard vertex-
based Finite Element Method (FEM) is used 
to discretize this nonlinear system.

The Newton-Krylov approach is used to solve 
the discrete nonlinear system of equations. 
Specifically, the exact Jacobian is formed at 
each iteration and this linear system is then 
solved iteratively with a preconditioned 
Krylov method for each Newton iteration. 
In this preliminary work we focus on 
improving the efficiency and scaling of this 
approach. We comment on Jacobian-Free 
Newton-Krylov methods as well as other 
preconditioners in our conclusions below. 

The exact Jacobian offers a significant 
challenge for iterative solvers. In particular it 
may be written in the form,

         J = D + N

where D is a symmetric block diagonal 
operator (the Picard linearization) and N 
is nonsymmetric with no derivatives. The 
difficulty posed by this system is three-fold. 
First the coefficients of entries in N involve 
gradients of the current target metric tensor, 
and hence, can be either positive or negative. 
In addition, their magnitude may be large, 
implying strong coupling of the components. 
Finally, the exact Jacobian is nonsymmetric. 

Thus far, our work has focused on evaluation 
of solver performance in the 2D research code 
that was developed for [1]. This code used 
BPKIT to provide a preconditioner comprised 
of Block ILU (1) in conjunction with two 
global passes of SSOR for FGMRES. While 
performance of this solver is adequate for 
small test problems, it is clear that it will not 
scale well enough to handle the large 2D and 
3D problems of interest to the ASC program. 
In particular, the linear scaling in solution 
cost required by large-scale simulations 
can only be provided by robust multilevel 
solver and preconditioning algorithms. Thus, 
the primary objective of our preliminary 
investigation was to demonstrate that the 
nonsymmetric linear system involving the full 
Jacobian could be preconditioned effectively 
with the well-known Ruge-Stüben serial 
Algebraic Multigrid Solver (AMG). To this 
end we have provided the option to use AMG 
both as a linear solver and as a preconditioner 
for GMRES in this research code. It is 
important to note that this is the basis for 
the parallel Los Alamos Algebraic Multigrid 
(LAMG) Solver by Wayne Joubert (LA-CC 
03/107).

The preliminary performance study was 
conducted on a rectangular horseshoe 
domain with an initial grid defined by 
transfinite interpolation. This provided a 
logically rectangular grid of 64 × 64 points. A 
relative convergence criteria for the Newton 
iteration of 10–6 in the two norm is used for 
all solvers. The performance of AMG as a 
preconditioner is quite impressive, with a 
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bounded number of iterations per Newton 
step for both single V(1,1) and W(1,1)cycles, 
as well as for the more practical W(1,1) 
cycles, with a relative convergence criteria 
of 10–2. This is clearly shown in the top 
figure, while the comparison with the BPKIT 
preconditioner is shown in the bottom figure. 
Most notably, for the BPKIT preconditioner 
the number of GMRES iterations/Newton 
iteration increases linearly as the Newton 
iteration converges. In addition to this poor 
scaling it is important to note that BPKIT 
preconditioned GMRES iterations will grow 
with increasing grid size, while the number 
of AMG preconditioned GMRES iterations 
should remain constant with increasing  
grid size.

This preliminary study has demonstrated 
the significant gains in efficiency that are 
possible by using advanced solvers such as 
AMG preconditioned GMRES. In particular, 
we have developed a solution algorithm that 
should scale linearly with the number of grid 
points. In the near future we hope to conduct 
more detailed scaling and robustness studies. 
In addition, future work will consider using 
the Jacobian-Free approach in conjunction 
with the use of the Picard linearization, D, 
as a preconditioner. This combination has 
been shown to work very well for scalar 
quasilinear diffusion equations. Furthermore, 
this preconditioner is symmetric and block 
diagonal, and hence, it fully decouples 
into n scalar systems. Thus, solving the 
preconditioning system with AMG will be 
very efficient.
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Figure 1— 
Smoothing is performed 
on a rectangular 
horseshoe domain 
with an initial grid 
defined by transfinite 
interpolation. In the 
top plot, three different 
cycling options are 
shown for AMG 
preconditioned GMRES, 
demonstrating that 
the number of GMRES 
iterations / Newton 
iteration is bounded. 
This is in contrast to 
the linear growth in 
the number of BPKIT 
preconditioned GMRES 
iterations, which are 
shown in the lower plot.
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